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4.4 The Fundamental Theorem of Calculus

Evaluate a definite integral using the Fundamental Theorem of Calculus.
Understand and use the Mean Value Theorem for Integrals.
Find the average value of a function over a closed interval.
Understand and use the Second Fundamental Theorem of Calculus.
Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus
You have now been introduced to the two major branches of calculus: differential
calculus (introduced with the tangent line problem) and integral calculus (introduced
with the area problem). So far, these two problems might seem unrelated—but there is
a very close connection. The connection was discovered independently by Isaac Newton
and Gottfried Leibniz and is stated in the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are
inverse operations, in the same sense that division and multiplication are inverse
operations. To see how Newton and Leibniz might have anticipated this relationship,
consider the approximations shown in Figure 4.27. The slope of the tangent line was
defined using the quotient (the slope of the secant line). Similarly, the area of a
region under a curve was defined using the product (the area of a rectangle). So,
at least in the primitive approximation stage, the operations of differentiation and definite
integration appear to have an inverse relationship in the same sense that division and
multiplication are inverse operations. The Fundamental Theorem of Calculus states that
the limit processes (used to define the derivative and definite integral) preserve this
inverse relationship.

(a) Differentiation (b) Definite integration
Differentiation and definite integration have an “inverse” relationship.
Figure 4.27
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ANTIDIFFERENTIATION AND DEFINITE INTEGRATION

Throughout this chapter, you have been using the integral sign to denote an antiderivative
(a family of functions) and a definite integral (a number).

Antidifferentiation: Definite integration:

The use of the same symbol for both operations makes it appear that they are related.
In the early work with calculus, however, it was not known that the two operations were
related.The symbol was first applied to the definite integral by Leibniz and was derived
from the letter (Leibniz calculated area as an infinite sum, thus, the letter S.�S.
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Proof The key to the proof is writing the difference in a convenient
form. Let be any partition of 

By pairwise subtraction and addition of like terms, you can write

By the Mean Value Theorem, you know that there exists a number in the th 
subinterval such that

Because you can let and obtain

This important equation tells you that by repeatedly applying the Mean Value Theorem,
you can always find a collection of ’s such that the constant is a Riemann
sum of on for any partition. Theorem 4.4 guarantees that the limit of Riemann
sums over the partition with exists. So, taking the limit produces

See LarsonCalculus.com for Bruce Edwards’s video of this proof.
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THEOREM 4.9 The Fundamental Theorem of Calculus

If a function is continuous on the closed interval and is an 
antiderivative of on the interval then

�b
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 f �x� dx � F�b� � F�a�.

�a, b	,f
F�a, b	f

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF
CALCULUS

1. Provided you can find an antiderivative of you now have a way to evaluate
a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the notation shown
below is convenient.

For instance, to evaluate you can write

3. It is not necessary to include a constant of integration in the antiderivative.
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Evaluating a Definite Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

a. b. c.

Solution

a.

b.

c.

A Definite Integral Involving Absolute Value

Evaluate 

Solution Using Figure 4.28 and the definition of absolute value, you can rewrite the
integrand as shown.

From this, you can rewrite the integral in two parts.

Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

the -axis, and the vertical lines and as shown in Figure 4.29.

Solution Note that on the interval 

Integrate between and 

Find antiderivative.

Apply Fundamental Theorem.

Simplify. �
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The definite integral of on is 
Figure 4.28
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The Mean Value Theorem for Integrals
In Section 4.2, you saw that the area of a region under a curve is greater than the area
of an inscribed rectangle and less than the area of a circumscribed rectangle. The Mean
Value Theorem for Integrals states that somewhere “between” the inscribed and circum-
scribed rectangles, there is a rectangle whose area is precisely equal to the area of the
region under the curve, as shown in Figure 4.30.

Proof

Case 1: If is constant on the interval then the theorem is clearly valid because
can be any point in 

Case 2: If is not constant on then, by the Extreme Value Theorem, you can
choose and to be the minimum and maximum values of on Because

for all in you can apply Theorem 4.8 to write the following.

See Figure 4.31.

Apply Fundamental Theorem.

Divide by 

From the third inequality, you can apply the Intermediate Value Theorem to conclude
that there exists some in such that

or

Inscribed rectangle Mean value rectangle Circumscribed rectangle
(less than actual area) (equal to actual area) (greater than actual area)

Figure 4.31

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Notice that Theorem 4.10 does not specify how to determine It merely guarantees
the existence of at least one number in the interval.c
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THEOREM 4.10 Mean Value Theorem for Integrals

If is continuous on the closed interval then there exists a number in
the closed interval such that

�b
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Mean value rectangle:

Figure 4.30
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Average Value of a Function
The value of given in the Mean Value Theorem for Integrals is called the average
value of on the interval 

To see why the average value of is defined in this way, partition into 
subintervals of equal width

If is any point in the th subinterval, then the arithmetic average (or mean) of the 
function values at the ’s is 

Average of 

By multiplying and dividing by you can write the average as

Finally, taking the limit as produces the average value of on the interval 
as given in the definition above. In Figure 4.32, notice that the area of the region under
the graph of is equal to the area of the rectangle whose height is the average value.

This development of the average value of a function on an interval is only one
of many practical uses of definite integrals to represent summation processes. In
Chapter 7, you will study other applications, such as volume, arc length, centers of
mass, and work.

Finding the Average Value of a Function

Find the average value of on the interval 

Solution The average value is

See Figure 4.33. � 16.
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Definition of the Average Value of a Function on an Interval

If is integrable on the closed interval then the average value of on the
interval is

See Figure 4.32.
1

b � a�
b

a

 f �x� dx.

f�a, b	,f

x
1 2 3 4

40

30

20

10 Average
value = 16

(4, 40)

(1, 1)

f(x) = 3x2 − 2x

y

Figure 4.33

x

f

a b

Average value

y

Figure 4.32

Average value �
1

b � a
 �b

a

 f �x� dx

9781285057095_0404.qxp  9/17/12  10:41 AM  Page 281

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The speed
of sound (in meters per second) can be modeled by

where is the altitude in kilometers (see Figure 4.34). What is the average speed of
sound over the interval 

Speed of sound depends on altitude.
Figure 4.34

Solution Begin by integrating over the interval To do this, you can break
the integral into five parts.

By adding the values of the five integrals, you have

So, the average speed of sound from an altitude of 0 kilometers to an altitude of
80 kilometers is
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The first person to fly at a speed
greater than the speed of sound
was Charles Yeager. On October
14, 1947, Yeager was clocked at
295.9 meters per second at an
altitude of 12.2 kilometers. If
Yeager had been flying at an 
altitude below 11.275 kilometers,
this speed would not have 
“broken the sound barrier.” The
photo shows an F/A-18F Super
Hornet, a supersonic twin-engine
strike fighter. A “green Hornet”
using a 50/50 mixture of biofuel
made from camelina oil became
the first U.S. naval tactical 
aircraft to exceed 1 mach.

Lukich/Shutterstock.com
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The Second Fundamental Theorem of Calculus
Earlier you saw that the definite integral of on the interval was defined using the
constant as the upper limit of integration and as the variable of integration. However,
a slightly different situation may arise in which the variable is used in the upper limit
of integration. To avoid the confusion of using in two different ways, is temporarily
used as the variable of integration. (Remember that the definite integral is a 
function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of

The Definite Integral as a Function

Evaluate the function

at 

Solution You could evaluate five different definite integrals, one for each of the
given upper limits. However, it is much simpler to fix (as a constant) temporarily
to obtain

Now, using you can obtain the results shown in Figure 4.35.

You can think of the function as accumulating the area under the curve
from to For the area is 0 and For 
gives the accumulated area under the cosine curve on the entire interval

This interpretation of an integral as an accumulation function is used often
in applications of integration.
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Constant F is a function of x.

Constant
f is a 

function of x. Constant
f is a 

function of t.

t

F(0) = 0

x = 0

y

is the area under the curve from 0 to 

Figure 4.35
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Exploration

Use a graphing utility to graph
the function

for Do you 
recognize this graph? Explain.
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In Example 6, note that the derivative of is the original integrand (with only the
variable changed). That is,

This result is generalized in the next theorem, called the Second Fundamental
Theorem of Calculus.

d
dx
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d
dx

�sin x	 �
d
dx ��

x

0
 cos t dt� � cos x.

F
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THEOREM 4.11 The Second Fundamental Theorem of Calculus

If is continuous on an open interval containing then, for every in the 
interval,

d
dx��

x

a

 f �t� dt� � f �x�.

xa,If

Proof Begin by defining as

Then, by the definition of the derivative, you can write

From the Mean Value Theorem for Integrals you know there exists
a number in the interval such that the integral in the expression above is
equal to Moreover, because it follows that as 
So, you obtain

A similar argument can be made for 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Using the area model for definite integrals,
the approximation

can be viewed as saying that the area of the 
rectangle of height and width is 
approximately equal to the area of the region 
lying between the graph of and the -axis 
on the interval

as shown in the figure at the right.
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Note that the Second Fundamental Theorem of Calculus tells you that when a func-
tion is continuous, you can be sure that it has an antiderivative. This antiderivative need
not, however, be an elementary function. (Recall the discussion of elementary functions
in Section P.3.)

The Second Fundamental Theorem of Calculus

Evaluate 

Solution Note that is continuous on the entire real number line. So,
using the Second Fundamental Theorem of Calculus, you can write

The differentiation shown in Example 7 is a straightforward application of the
Second Fundamental Theorem of Calculus. The next example shows how this theorem
can be combined with the Chain Rule to find the derivative of a function.

The Second Fundamental Theorem of Calculus

Find the derivative of 

Solution Using you can apply the Second Fundamental Theorem of Calculus
with the Chain Rule as shown.

Chain Rule

Definition of

Substitute for

Substitute for

Apply Second Fundamental Theorem of Calculus.

Rewrite as function of 

Because the integrand in Example 8 is easily integrated, you can verify the
derivative as follows.

In this form, you can apply the Power Rule to verify that the derivative of is the same
as that obtained in Example 8.
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Net Change Theorem
The Fundamental Theorem of Calculus (Theorem 4.9) states that if is continuous on
the closed interval and is an antiderivative of on then

But because this statement can be rewritten as

where the quantity represents the net change of F on the interval 

Using the Net Change Theorem

A chemical flows into a storage tank at a rate 
of liters per minute, where is the 
time in minutes and  Find the 
amount of the chemical that flows into the 
tank during the first 20 minutes.

Solution Let be the amount of the 
chemical in the tank at time Then 
represents the rate at which the chemical 
flows into the tank at time During the 
first 20 minutes, the amount that flows 
into the tank is

So, the amount that flows into the tank during 
the first 20 minutes is 4200 liters.

Another way to illustrate the Net Change Theorem is to examine the velocity of a
particle moving along a straight line, where is the position at time Then its 
velocity is and 

This definite integral represents the net change in position, or displacement, of the 
particle.

�b

a

 v�t� dt � s�b� � s�a�.

v�t� � s��t�
t.s�t�

 � 4200.

 � 3600 � 600

 � �180t �
3
2

t2�
20

0

 �20

0
 c��t� dt � �20

0
 �180 � 3t� dt

t.

c��t�t.
c�t�

0 	 t 	 60.
t�180 � 3t�

�a, b	.F�b� � F�a)

�b

a

 F��x� dx � F�b� � F�a�

F��x) � f �x�,

�b

a

  f�x� dx � F�b� � F�a�.

�a, b	,fF�a, b	
f
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THEOREM 4.12 The Net Change Theorem

The definite integral of the rate of change of quantity gives the total
change, or net change, in that quantity on the interval 

Net change of F�b

a

 F��x� dx � F�b� � F�a�

�a, b	.
F��x�

Christian Lagerek/Shutterstock.com
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When calculating the total distance traveled by the particle, you must consider the
intervals where and the intervals where When the 
particle moves to the left, and when the particle moves to the right. To 
calculate the total distance traveled, integrate the absolute value of velocity So,
the displacement of the particle on the interval is 

Displacement on 

and the total distance traveled by the particle on is

Total distance traveled on 

(See Figure 4.36.)

Solving a Particle Motion Problem

The velocity (in feet per second) of a particle moving along a line is

where is the time in seconds. 

a. What is the displacement of the particle on the time interval 

b. What is the total distance traveled by the particle on the time interval 

Solution

a. By definition, you know that the displacement is

So, the particle moves feet to the right.

b. To find the total distance traveled, calculate Using Figure 4.37 
and the fact that can be factored as you can determine that

on and on So, the total distance traveled is

 �
71
6

 feet.

 �
45
4

� �
7

12�
 � �t4

4
�

10
3

t3 �
29
2

t2 � 20t�
4

1
� �t4

4
�

10
3

t3 �
29
2

t2 � 20t�
5

4

 � �4

1
 �t3 � 10t2 � 29t � 20� dt � �5

4
 �t3 � 10t2 � 29t � 20� dt

 �5

1
 �v�t�� dt � �4

1
 v�t� dt � �5

4
 v�t� dt

�4, 5	.v�t� 	 0�1, 4	v�t� � 0
�t � 1��t � 4��t � 5�,v�t�

�5
1  �v�t�� dt.

32
3

 �
32
3

.

 �
128
12

 �
25
12

� �
103
12 �

 � �t4

4
�

10
3

t3 �
29
2

t2 � 20t�
5

1

 �5

1
 v�t� dt � �5

1
 �t3 � 10t2 � 29t � 20� dt

1 	 t 	 5?

1 	 t 	 5?

t

v�t� � t3 � 10t2 � 29t � 20

�a, b	 � �b

a

 �v�t�� dt � A1 � A2 � A3.

�a, b	

�a, b	 � �b

a

 v�t� dt � A1 � A2 � A3

�a, b	
�v�t��.

v�t� � 0,
v�t� 	 0,v�t� � 0.v�t� 	 0
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t

A1

A2

A3

a

v(t)

b

v

and are the areas of the 
shaded regions.
Figure 4.36

A3A1, A2,

t

v(t)

v

1 2 3 4 5

2

−2

4

6

8

Figure 4.37
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288 Chapter 4 Integration

Graphical Reasoning In Exercises 1–4, use a graphing
utility to graph the integrand. Use the graph to determine
whether the definite integral is positive, negative, or zero.

1. 2.

3. 4.

Evaluating a Definite Integral In Exercises 5–34, evaluate
the definite integral. Use a graphing utility to verify your
result.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.

Finding the Area of a Region In Exercises 35–38,
determine the area of the given region.

35. 36.

37. 38.

Finding the Area of a Region In Exercises 39–44, find the
area of the region bounded by the graphs of the equations.

39.

40.

41.

42.

43.

44.

Using the Mean Value Theorem for Integrals In
Exercises 45–50, find the value(s) of guaranteed by the Mean
Value Theorem for Integrals for the function over the given
interval.

45. 46.

47. 48.

49. 50.

Finding the Average Value of a Function In Exercises
51–56, find the average value of the function over the given
interval and all values of in the interval for which the
function equals its average value.

51. 52.

53. 54.

55. 56. �0, 
�

2�f �x� � cos x,�0, �	f �x� � sin x,

�0, 1	f �x� � 4x3 � 3x2,�0, 1	f �x� � x3,

�1, 3	f �x� �
4�x2 � 1�

x2 ,��3, 3	f �x� � 9 � x2,

x

��
�

3
, 

�

3�f �x� � cos x,��
�

4
, 

�

4�f �x� � 2 sec2 x,

�1, 3	f �x� �
9
x3,�0, 6	y �

x2

4
,

�4, 9	f �x� � �x,�0, 3	f �x� � x3,

c

y � 0y � 1 � x4,

y � 0y � �x2 � 4x,

y � 0y � 2�x � x,

y � 0x � 8,x � 0,y � 1 � 3�x,

y � 0x � 2,y � x3 � x,

y � 0x � 2,x � 0,y � 5x2 � 2,

x
π

2

3

4

1

y

π
2

x
ππ
24

1

y

y � x � sin xy � cos x

x
1 2

1

y

x
1

1
4

y

y �
1
x2y � x � x2

���2

���2
 �2t � cos t� dt

���3

���3
 4 sec � tan � d�

���2

��4
 �2 � csc2 x� dx

���6

���6
 sec2 x dx

���4

0
 

sec2 �
tan2 � � 1

 d����4

0
 
1 � sin2 �

cos2 �
 d�

��

0
 �2 � cos x� dx��

0
 �1 � sin x� dx

�4

0
 �x2 � 4x � 3� dx�4

0
 �x2 � 9� dx

�4

1
 �3 � �x � 3�� dx�5

0
 �2x � 5� dx

��1

�8
 
x � x2

2 3�x
   dx�0

�1
 �t 1�3 � t 2�3� dt

�2

0
 �2 � t��t dt�1

0
 
x � �x

3
 dx

�8

1
�2

x
 dx�1

�1
 �3�t � 2� dt

�8

�8
 x1�3 dx�4

1
 
u � 2
�u

du

��1

�2
 u �

1
u2� du�2

1
  3

x2 � 1� dx

�3

1
 �4x3 � 3x2� dx�1

0
 �2t � 1�2 dt

�2

1
 �6x2 � 3x� dx�1

�1
 �t2 � 2� dt

�2

�1
 �7 � 3t� dt�0

�1
 �2x � 1� dx

�1

�3
 8 dt�2

0
 6x dx

�2

�2
 x�2 � x dx�2

�2
 x�x2 � 1 dx

��

0
 cos x dx��

0
 

4
x2 � 1

 dx

4.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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4.4 The Fundamental Theorem of Calculus 289

57. Velocity The graph shows the velocity, in feet per second,
of a car accelerating from rest. Use the graph to estimate the
distance the car travels in 8 seconds.

Figure for 57 Figure for 58

58. Velocity The graph shows the velocity, in feet per second,
of a decelerating car after the driver applies the brakes. Use the
graph to estimate how far the car travels before it comes to 
a stop.

61. Force The force (in newtons) of a hydraulic cylinder in a
press is proportional to the square of where is the
distance (in meters) that the cylinder is extended in its cycle.
The domain of is and 

(a) Find as a function of 

(b) Find the average force exerted by the press over the 
interval 

62. Blood Flow The velocity of the flow of blood at a 
distance from the central axis of an artery of radius is 

where is the constant of proportionality. Find the average rate
of flow of blood along a radius of the artery. (Use 0 and as
the limits of integration.)

63. Respiratory Cycle The volume in liters, of air in the
lungs during a five-second respiratory cycle is approximated
by the model where is
the time in seconds. Approximate the average volume of air in
the lungs during one cycle.

64. Average Sales A company fits a model to the monthly
sales data for a seasonal product. The model is

where is sales (in thousands) and is time in months.

(a) Use a graphing utility to graph for
Use the graph to explain why the average

value of is 0 over the interval.

(b) Use a graphing utility to graph and the line
in the same viewing window. Use the

graph and the result of part (a) to explain why is called
the trend line.

65. Modeling Data An experimental vehicle is tested on a
straight track. It starts from rest, and its velocity (in meters
per second) is recorded every 10 seconds for 1 minute (see
table).

(a) Use a graphing utility to find a model of the form
for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the Fundamental Theorem of Calculus to approximate
the distance traveled by the vehicle during the test.

v � at3 � bt2 � ct � d

t 0 10 20 30 40 50 60

v 0 5 21 40 62 78 83

v

g
g�t� � t�4 � 1.8

S�t�
f �t�

0 	 t 	 24.
f �t� � 0.5 sin��t�6�

tS

0 	 t 	 24S�t� �
t
4

� 1.8 � 0.5 sin� t
6 �,

tV � 0.1729t � 0.1522t2 � 0.0374t3,

V,

R
k

v � k�R2 � r 2�

Rr
v

�0, ��3	.

x.F

F�0� � 500.�0, ��3	,F

xsec x,
F

t
1 2 3

Time (in seconds)

4 5

20

40

60

V
el

oc
ity

 (
in

 f
ee

t p
er

 s
ec

on
d)

80

100

v

t

v

4 8 12

Time (in seconds)

16 20

30

60

90

V
el

oc
ity

 (
in

 f
ee

t p
er

 s
ec

on
d)

120

150

WRITING ABOUT CONCEPTS
59. Using a Graph The graph of is shown in the figure.

(a) Evaluate 

(b) Determine the average value of on the interval 

(c) Determine the answers to parts (a) and (b) when the
graph is translated two units upward.

60. Rate of Growth Let represent the rate of growth
of a dog, in pounds per year. What does represent?
What does represent about the dog?�6

2  r��t� dt
r�t�

r��t�

�1, 7	.f

�7
1  f �x� dx.

x
1 2 3 4 5 6 7

1

2

3

4

y

f

f

66. HOW DO YOU SEE IT? The graph of is
shown in the figure. The shaded region has an
area of 1.5, and Use this 
information to fill in the blanks.

(a) (b)

(c) (d)

(e)

(f) The average value of over the interval is �.�0, 6	f

�6

0
 �2 � f �x�	 dx � �

�2

0
 �2 f �x� dx � ��6

0
 � f �x�� dx � �

�6

2
 f �x� dx � ��2

0
 f �x� dx � �

x
2 3 4 5 6

A
B

y

f

�6
0   f �x� dx � 3.5.

A
f
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290 Chapter 4 Integration

Evaluating a Definite Integral In Exercises 67–72, find 
as a function of and evaluate it at and 

67.

68.

69. 70.

71. 72.

73. Analyzing a Function Let

where is the function whose graph is shown in the figure.

(a) Estimate and 

(b) Find the largest open interval on which is increasing.
Find the largest open interval on which is decreasing.

(c) Identify any extrema of 

(d) Sketch a rough graph of 

Figure for 73 Figure for 74

74. Analyzing a Function Let

where is the function whose graph is shown in the figure.

(a) Estimate and 

(b) Find the largest open interval on which is increasing.
Find the largest open interval on which is decreasing.

(c) Identify any extrema of 

(d) Sketch a rough graph of 

Finding and Checking an Integral In Exercises 75–80,
(a) integrate to find as a function of , and (b) demonstrate
the Second Fundamental Theorem of Calculus by differentiating
the result in part (a).

75. 76.

77. 78.

79. 80.

Using the Second Fundamental Theorem of Calculus

In Exercises 81–86, use the Second Fundamental Theorem of
Calculus to find 

81. 82.

83. 84.

85. 86.

Finding a Derivative In Exercises 87–92, find 

87. 88.

89. 90.

91. 92.

93. Graphical Analysis Sketch an approximate graph of on
the interval where 

Identify the -coordinate of an extremum of To print an
enlarged copy of the graph, go to MathGraphs.com

94. Area The area between the graph of the function

and the axis over the interval is

(a) Find the horizontal asymptote of the graph of 

(b) Integrate to find as a function of Does the graph of 
have a horizontal asymptote? Explain.

Particle Motion In Exercises 95–100, the velocity function,
in feet per second, is given for a particle moving along a
straight line. Find (a) the displacement and (b) the total 
distance that the particle travels over the given interval.

95.

96.

97.

98. 0 	 t 	 5v�t� � t3 � 8t2 � 15t,

1 	 t 	 7v�t� � t3 � 10t2 � 27t � 18,

1 	 t 	 5v�t� � t2 � t � 12,

0 	 t 	 3v�t� � 5t � 7,

Ax.A

g.

A�x� � �x

1
 4 �

4
t2� dt.

�1, x	t-

g�t� � 4 �
4
t2

A

t

f

42

2

1

−2

−1

y

g.x

g�x� � �x

0
 f �t� dt.

0 	 x 	 4,
g

F�x� � �x2

0
 sin �2 d�F�x� � �x3

0
 sin t2 dt

F�x� � �x2

2
 
1
t 3 dt F�x� � �sin x

0
 �t dt

F�x� � �x

�x

 t3 dtF�x� � �x�2

x

 �4t � 1� dt

F��x�.

F�x� � �x

0
 sec3 t dtF�x� � �x

0
 t cos t dt

F�x� � �x

1
   

4�t dtF�x� � �x

�1
 �t 4 � 1 dt

F�x� � �x

1
 

t2

t2 � 1
 dtF�x� � �x

�2
 �t2 � 2t� dt

F��x�.

F�x� � �x

��3
 sec t tan t dtF�x� � �x

��4
 sec2 t dt

F�x� � �x

4
 �t dtF�x� � �x

8
   

3�t dt

F�x� � �x

0
 t�t2 � 1� dtF�x� � �x

0
 �t � 2� dt

xF

g.

g.

g
g

g�8�.g�6�,g�4�,g�2�,g�0�,
f

g�x� � �x

0
 f �t� dt

y

t
21 3 7 84 5 6

−2
−3
−4

−1

4
3
2
1

f

y

t
21 3 7 84

−2
−1

6
5
4
3
2
1

f

g.

g.

g
g

g�8�.g�6�,g�4�,g�2�,g�0�,
f

g �x� � �x

0
 f �t� dt

F�x� � �x

0
 sin � d�F�x� � �x

1
 cos � d�

F�x� � �x

2
 �

2
t3 dtF�x� � �x

1
 
20
v2  dv

F�x� � �x

2
 �t3 � 2t � 2� dt

F�x� � �x

0
 �4t � 7� dt

x � 8.x � 5,x � 2,x
F
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4.4 The Fundamental Theorem of Calculus 291

99.

100.

101. Particle Motion A particle is moving along the -axis.
The position of the particle at time is given by

Find the total distance the particle travels in 5 units of time.

102. Particle Motion Repeat Exercise 101 for the position
function given by 

103. Water Flow Water flows from a storage tank at a rate of
liters per minute. Find the amount of water that

flows out of the tank during the first 18 minutes.

104. Oil Leak At 1:00 P.M., oil begins leaking from a tank at a
rate of gallons per hour.

(a) How much oil is lost from 1:00 P.M. to 4:00 P.M.?

(b) How much oil is lost from 4:00 P.M. to 7:00 P.M.?

(c) Compare your answers to parts (a) and (b). What do you
notice?

Error Analysis In Exercises 105–108, describe why the state-
ment is incorrect.

105.

106.

107.

108.

109. Buffon’s Needle Experiment A horizontal plane is
ruled with parallel lines 2 inches apart. A two-inch needle is
tossed randomly onto the plane. The probability that the 
needle will touch a line is

where is the acute angle between the needle and any one of
the parallel lines. Find this probability.

110. Proof Prove that

True or False? In Exercises 111 and 112, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

111. If on the interval then

112. If is continuous on then is integrable on 

113. Analyzing a Function Show that the function

is constant for 

114. Finding a Function Find the function and all values
of such that

115. Finding Values Let

where is continuous for all real Find (a) (b)
(c) and (d) G��0�.G� �x�,

G��0�,G�0�,t.f

G�x� � �x

0
 �s�s

0
 f �t� dt� ds

�x

c

 f �t� dt � x2 � x � 2.

c
f �x)

x > 0.

 f �x� � �1�x

0
 

1
t 2 � 1

 dt � �x

0
 

1
t 2 � 1

 dt

�a, b	.f�a, b	,f

F �b� � F �a� � G�b� � G�a�.

�a, b	,F��x� � G��x�

d
dx ��

v�x�

u�x�
 f �t� dt� � f �v�x��v��x� � f �u�x��u��x�.

θ

�

P �
2
�

 ���2

0
 sin � d�

�3��2

��2
 csc x cot x dx � ��csc x	3��2

��2 � 2

�3��4

��4
 sec2 x dx � �tan x	3��4

��4 � �2

�1

�2
 
2
x3 dx � ��

1
x2�

1

�2
� �

3
4

�1

�1
 x�2 dx � ��x�1	 1

�1 � ��1� � 1 � �2

�4 � 0.75t�

�500 � 5t�

0 	 t 	 5.x�t� � �t � 1��t � 3�2,

0 	 t 	 5.x�t� � t3 � 6t2 � 9t � 2,

t
x

0 	 t 	 3�v�t� � cos t,

1 	 t 	 4v�t� �
1
�t

,

Use a graphing utility to graph the function

on the interval Let be the following function of 

(a) Complete the table. Explain why the values of are increasing.

(b) Use the integration capabilities of a graphing utility to graph 

(c) Use the differentiation capabilities of a graphing utility to
graph How is this graph related to the graph in part (b)?

(d) Verify that the derivative of

is Graph and write a short paragraph about how this
graph is related to those in parts (b) and (c).

ysin2 t.

y �
1
2

 t �
1
4

 sin 2t

F��x�.

F.

F

F�x� � �x

0
 sin2 t dt

x.F�x�0 	 t 	 �.

y1 � sin2 t

Demonstrating the Fundamental Theorem

x 0
�

6
�

3
�

2
2�

3
5�

6
�

F�x�
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